

Unite Accelerate Transform

Digital Twin

Leveraging the Digital Transformation of the Industry

CONTENTS

1.	What is a Digital Twin?	04
2.	Value of the Digital Twin	06
3.	Mapping of use cases	08
4.	"Instructions" of use cases	10
5.	Use cases	12
6.	Conclusion	36
7.	Appendices	37

THE DIGITAL TWIN

Definition, mapping of use cases and value creation

The Digital Twin is a recent industrial concept that offers companies new applications to optimize their performance.

The aim of this publication is to provide an initial **overview of the adoption** of this concept within the French industry and then present the benefits of using such a tool. For this purpose, the authors has deliberately taken the approach of presenting examples and use cases. The aim is to inform and guide readers in their thinking about their own tools and the functions they want them to perform.

THE DIGITAL TWIN IS NOT AN **OBJECTIVE IN ITSELF, BUT A MEANS** TO ACHIEVE CERTAIN BENEFITS. THIS DOCUMENT IS INTENDED TO ILLUSTRATE THESE BENEFITS.

This document provides a **definition** of the Digital Twin and explains many industrial use cases.

The wording and nuances of the definition are discussed.

The use cases are explained in detail with their added value and areas of application. A future publication may cover the means of deployment and operation of a Digital Twin, as well as the associated technical challenges.

Finally, it is important to consider this publication as a **vision shared by a group** of industrialists in our Sector who are enthusiastic about the subject and who wish to promote this new tool to improve the efficiency of products and production systems.

I would like to thank all the participants of the "Digital Twin" Technical Committee who, as part of the CORI2DF of our "Solution Industrie du Futur" Sector, actively contributed to the production of this brochure.

Frédéric Sanchez

President of AIF President of the Strategic Committee for the Solution Industrie du Futur Sector

WHAT IS A DIGITAL TWIN?

0100

0 0 L 0 0 L 0

810

To qualify as a Digital Twin, a system must meet the following three criteria:

010

A Digital Twin is an **organized set** of digital models representing a real-world entity designed to address specific issues and uses.

The digital models can be diverse: 2D or 3D geometric models, topological models, physical and mathematical models, functional models, etc.

These models are organized; in other words, they are coherent and interconnected to represent different aspects of the twin.

Digital Twins can and should be assembled and nested according to the evolution of the desired uses and the studied scope (systems of systems).

The Digital Twin must represent an entity that

actually exists. It is different from the digital model made before production.

This digital model is therefore not a Digital Twin. However, a digital model can be part of a Digital Twin. Furthermore, once the digital model is physically realized and synchronized with its physical realization, it becomes a Digital Twin.

The entity studied can be, for example, a product, a machine, a process, a department, a complete production facility, etc.

The Digital Twin is not an objective in itself, but a means to achieve specific objectives.

2 The Digital Twin is **updated** in relation to reality, with a frequency and precision adapted to its issues and uses.

If the models are not fed with data from the real

world, they do not constitute a Digital Twin.

A simple simulation or model is therefore not a Digital Twin if it is not synchronized with reality.

The updates in relation to reality follow the life cycle of the entity being studied and are calibrated to the exact needs of the desired use(s). The updates are therefore not necessarily performed in real time.

The precision, granularity and content $\ensuremath{\mathsf{must}}\xspace$ also

be chosen according to the right needs. The Digital Twin may, for example, contain forms, states, functions, processes, behaviors, attributes, operational data, dynamics, reflect the environment, etc.

Absolute precision (from micro-atomic to macrogeometric level) is impossible and unnecessary.

understand

predict

the operation and management of the real entity.

The advanced operating tools enable the desired objectives to be achieved. This document explains a number of possible uses.

A simple database without tools is therefore not a Digital Twin.

The Digital Twin always has an impact on the physical twin. However, this link is not always direct and automated.

VALUE OF THE DIGITAL TWIN

Digital Twins have a wide scope of applications. Following in the footsteps of pioneers such as NASA, the Digital Twin concept has taken root in the manufacturing industry, where it continues to grow.

The areas in which Digital Twins are developing most rapidly include:

0,0

CONSTRUCTION

FACTORIES

10

378

The Digital Twin is also studied in:

MOBILITY, TRANSPORT AND LOGISTICS

Digital Twin of a logistics network

PORT AND AIRPORT

Digital Twin of an airport

Digital Twin of a railway station

Digital Twins make it possible to maintain an up-to-date digital representation of entities of interest of the physical world in their environment, in order to provide a comprehensive understanding for optimal decisionmaking.

Digital Twins aim to use historical and current data to represent the past and present, to simulate or even

CITIES

The Digital Twin is also emerging in the field of science:

HEALTH Digital Twin of the care pathway MEDICINE Digital Twin of the human heart

BIOLOGY Digital Twin of the ocean ENERGY Digital Twin of a nuclear reactor

predict possible futures. Typical uses of Digital Twins range from basic uses such as digitization and visualization (e.g., 2D, 3D, Virtual and Augmented Reality) to more advanced uses such as simulation, orchestration/management/control, or prediction (e.g., by using Artificial Intelligence algorithms based on the historical information stored in the Digital Twins).

Adoption

In a study published in July 2022, Gartner places Digital Twin technology in the "trough of disillusionment" of its Hype Cycle for Manufacturing Operations Strategy, meaning that interest in the technology wanes after inflated expectations have been created.

The next phase should be the "slope of enlightenment", in which more and more examples show how this technology can benefit companies. Indeed, one of the objectives of this publication is to demonstrate the many use cases for Digital Twins.

Gartner positions the Digital Twin as a "transformational" technology, providing the greatest benefits, and predicts widespread adoption in 2-5 years. The current estimated uptake of the technology is between 1 and 5% of the potential companies and organizations that could benefit from it. ③

Gartner forecasted in February 2022 that the Digital Twins market would reach \$183 billion by 2031.

6

Our study presents numerous use cases of Digital Twins, as well as the benefits they bring to the industry. Obstacles to the successful implementation of a Digital Twin include:

- The lack of a clear objective and a defined scope of application.
- The complexity of merging IT, Information Technology, and OT, Operational Technology for the shop floor, which the industrial Digital Twin involves.

It is therefore important, as stated in our definition, to build a Digital Twin to "address specific issues and uses", define performance indicators and milestones, and also ensure the collaboration of IT departments with production and other project stakeholders.

O Source: Gartner Hype Cycle for Manufacturing Operations Strategy, Simon Jacobson, Janet Suleski, 29 July 2022.

⁽²⁾ It should be noted that the Gartner study covers a broader spectrum than the industrial applications of Digital Twins presented in this paper, such as healthcare applications using a patient's Digital Twin.

③ Source: Gartner Hype Cycle for Manufacturing Operations Strategy, Analysis of Digital Twin Technology chapter, Alfonso Velosa, Marc Halpern, 29 July 2022.

MAPPING OF USE CASES OF THE DIGITAL TWIN

0 101 010 0

0 10

0,00

This chapter presents different industrial use cases of the Digital Twin to illustrate its benefits. The following diagram of industrial production gives an overview.

- **PDT** = Product use case
- PCA = Process use case Supply
- **PCP** = Process use case Production
- **PCD** = Process use case Distribution
- EQT = Equipment use case OPR = Operator use case USN = Factory use case
- = Re

= Reduced environmental impact

Management and optimization of the production line

C) LNS Research - Alliance Industrie du Fut

"INSTRUCTIONS" OF USE CASES

Use cases are classified according to:

0100

8 L 8

THE NATURE OF THE REAL-WORLD ENTITY REPRESENTED BY THE DIGITAL TWIN. IN AN INDUSTRIAL ENVIRONMENT, THIS COULD BE ONE OF THE FOLLOWING ENTITIES:

A product to be manufactured

0,0

- An industrial **process**, such as:
 - The **supply** process for the materials and components needed for production
 - The production process
 - The distribution process of the finished product
- A necessary **resource** for production:
 - An **industrial equipment**, e.g., robot, CNC machine, etc. in the workstation environment
 - A **factory** as a whole (building, production lines, equipment)
- A human operator in their work environment

The use cases are presented in the order of the life cycle stages of the entity in question: design, production or commissioning, use, maintenance, recycling or dismantling.

Each use case includes:

A BRIEF DESCRIPTION OF THE USE CASE AS WELL AS THE EXPECTED BENEFITS.

AN ICON INDICATING WHETHER THE USE CASE REDUCES THE ENVIRONMENTAL IMPACT OF THE ACTIVITY.

THE LIST OF INDUSTRIES THAT CAN BENEFIT FROM THE USE CASE.

The selected list comes from the first level of the European Union's CPA*. Groupings and ad hoc changes have been made for simplicity. Ultimately, the list of relevant industries is as follows:

- Aviation, trains, ships
- Automotive
- Construction
- Industrial equipment
- High technology
- Oil and chemical
- Communication infrastructures
- Materials
- Energy production
- Consumer goods
- Pharmaceutical products
- Transport

A LIST OF ALLIANCE INDUSTRIE DU FUTUR SHOWCASES RELATED TO THE USE CASE.

Disclaimer: the links established between Showcases and use cases are the result of an interpretation of the AIF, and do not involve the companies mentioned.

FOUR LAYERS ILLUSTRATING THE DIFFERENT LEVELS OF THE USE CASE:

 The users identified by their roles (Data Scientist, Quality Manager, etc.)

 The applications offered to the user to benefit from the Digital Twin

The Digital Twins and data models required for the operation of the applications

The entities of the physical world represented by the Digital Twins

The entities of the three lower layers (applications, Digital Twins and models, physical world) communicate according to the adopted architecture. The data flows between layers are therefore not represented.

*European Union Classification of Products by Activity

CONTENTS OF USE CASES

0 LOL OLO 0

0 0 1 0 1 0 0 0

0 0 1 0 1 0

PRODUCT

0:0

Ø	[PDT-01] Improvement of the product design	13
Ø	[PDT-02] Traceability of the environmental impacts of the production of a product	e 14
	[PDT-03] Acceleration of the realization of a complex equipment while waiting the reception of some of its components	15
Ø	[PDT-04] Digital Twin of the product in use	16
Ø	[PDT-05] Reuse / Recycling / Dismantling of the product	17

[PCA-01] Optimization of the supply network according to cost, quality, time and environmental impact criteria18
Ø [PCA-02] Dynamic optimization of supply chain logistics19
[PCA-03] Optimized management of stocks and supply of the production line20
Ø [PCP-01] Improvement of the design of production lines21
[PCP-02] Virtual commissioning of a production line22
[PCP-03] Training of operators23
Ø [PCP-04] Optimization of the production line24
[PCP-05] Improvement of product quality based on production history25

	[PCP-06] Real-time control of the production line26
Ø	[PCP-07] Reduction of the environmental impact of the production line
Ø	[PCD-01] Optimization of the product distribution network according to cost, quality, time and
	environmental impact criteria

[PCD-02] Dynamic optimization of the distribution of a product to customers..... ...29

RESOURCE

	[EQT-01] Virtual commissioning of equipment	.30
Ø	[EQT-02] Maintenance assistance	31
Ø	[EQT-03] Predictive maintenance of equipment	. 32
	[EQT-04] Design and administration of a factory OT/IT architecture	. 33
Ø	[USN-01] Management of industrial infrastructure throughout its life cycle	.34

OPERATORS 👮

[OPR-01] Improvement of the ergonomics of	
the workstation	

[PDT-01] IMPROVEMENT OF **THE PRODUCT DESIGN**

Digital Twins of the production process and products already manufactured are used to improve the design of future products.

BENEFITS

RODUC

- Reduce the number of production faults, issues, etc. and improve production rates by designing products that are easier to manufacture or assemble using the insights of the Digital Twins into production systems and products.
- Improve the reliability of future products by exploiting the usage and maintenance data of the Digital Twins of products in use (breakages observed, types of repairs performed, etc.).
- Improve the appropriateness of future products for consumer needs by analyzing how products are used.
- · Introduce or improve the eco-design of products.

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Consumer goods

A2Mac1 Aptar Pharma Cotral Lab Fonderies de Sougland Framatome Gebo Cermex Pellenc Saunier Duval

[PDT-02] TRACEABILITY OF THE **ENVIRONMENTAL IMPACTS OF THE PRODUCTION OF A PRODUCT**

The Digital Twin of the product incorporates all the environmental impacts of its production, from the extraction of the raw or recycled materials, the manufacturing process, storage in the warehouse and end of life. It takes into account the impacts of the production of components by subcontractors.

BENEFITS

- Comply with current or future regulatory requirements, in particular concerning the calculation of a manufactured product's carbon footprint (digital product passport).
- · Measure and then reduce the environmental footprint of products (greenhouse gas emissions, energy or water consumption, etc.) by decreasing the impact of industrial processes, changing subcontractors, etc.
- Trace the quantity of raw materials used and not used (waste) for each product.

INDUSTRIES

- 1. Automotive 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Oil and chemica
- 7. Communication infrastructures

INDUSTRY OF

SHOWCASE

FUTURE

L'Oréal

- 8. Materials
- 9. Pharmaceutical products
- 10. Consumer goods

[PDT-03] ACCELERATION OF THE **REALIZATION OF A COMPLEX EQUIPMENT** WHILE WAITING THE RECEPTION OF SOME **OF ITS COMPONENTS**

The Digital Twin of the product makes it possible to progress in the production of complex machines before the reception of certain specialized sub-components, thus reducing the time taken to build the machines. Hardware-in-the-loop simulations are carried out.

Example: A virtual sub-system for developing a robotic cell used to manufacture silicon wafers in the semiconductor industry allows for faster production.

BENEFITS

PRODUCT

- Reduce the time taken to build the equipment without waiting for the delivery of specialized sub-components (which may be late).
- Develop the system software in parallel with the acquisition of the components of a sub-system.
- · Facilitate the testing of complex machines even if some subcomponents are missing.

INDUSTRIES

- 1. Industrial equipment
- 2. High technology
- 3. Communication infrastructures

[PDT-04] DIGITAL TWIN **OF THE PRODUCT IN USE**

Delivered with the physical product, the Digital Twin of the product reflects all its features and options. It is then constantly updated via the cloud, based on data captured during the use and maintenance of the product, in order to optimize usage and maintenance.

BENEFITS

- Limit energy consumption or improve safety by sending personalized suggestions to the vehicle driver or by updating the embedded software according to the driving behavior recorded in the Digital Twin.
- Recommend a maintenance operation after analysis of the flight data to prevent a possible failure of the aircraft.
- Facilitate the repair of smartphones with an exact view of the different components and materials found in the device.

INDUSTRIES

1. Automotive 2. Aviation, trains, ships

3. Construction

4. Industrial equipment

5. High technology

6. Communication

infrastructures

7. Energy production

8. Consumer goods

9. Transport and logistics

INDUSTRY OF THE FUTURE INDUSTRIE DU FUTUR SHOWCASE COCRUENCE DE LA RENCA RA

Gravotech

Lectra

The Digital Twin of the product offers full traceability of product components and their wearing, facilitating reuse and/or recycling.

BENEFITS

PRODUCT

- · Limit the environmental impacts of industrial production through reuse and recycling.
- Facilitate reuse and recycling thanks to the traceability of various components and their usage & wearing data stored in the Digital Twin (e.g., the state of the battery, making it possible to decide whether or not it can be reused).
- Facilitate the recycling and dismantling of an aircraft by providing a complete and accurate view of the aircraft's condition.

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Consumer goods

[PCA-01] OPTIMIZATION OF THE **SUPPLY NETWORK ACCORDING** TO COST, QUALITY, TIME AND **ENVIRONMENTAL IMPACT CRITERIA**

INDUSTRIES

2. Aviation, trains,

3. Construction

eauipment

5. High technology

6. Oil and chemical

7. Communication infrastructures

1. Automotive

ships

4. Industrial

The supply chain Digital Twin enables the optimization of the supply chain according to cost, quality, lead time and environmental impact criteria through simulations of supply logistics and inbound and outbound production flows.

8. Materials

production

products

12. Transport

10. Pharmaceutical

11. Consumer goods

and logistics

9. Energy

BENEFITS

- Measure and then reduce the environmental footprint of the upstream chain.
- Manage risk, secure supply, and ensure resilience of the supply models
- Optimize inventory level and reduce the risk of stock-outs by streamlining the choice of suppliers and supply methods.
- Optimize the storage chain (inbound and outbound).

USERS

INDUSTRY OF

THE FUTURE

SHOWCASE

Soitec

Viwametal

INDUSTRIE DU FUTUR

[PCA-02] DYNAMIC OPTIMIZATION **OF SUPPLY CHAIN LOGISTICS**

The Digital Twin reflects the supply routes in real time thanks to information shared by the carriers on the location, contents and schedule of the various modes of transport.

BENEFITS

 Improve travel time and route selection, resilience to hazards.

302

- Optimize delivery times and responsiveness to orders.
- Optimize the refueling of means of transport.
- Improve energy efficiency.
- 1. Automotive 2. Aviation, trains,

INDUSTRIES

- ships 3. Construction

- 4. Industrial equipment 5. High technology 6. Oil and chemical
- 7. Communication infrastructures

- 8. Materials
- 9. Energy production 10. Pharmaceutical
- products
- 11. Consumer goods 12. Transport and
- logistics

OCP SEW Usocome Siemens

Packing list and delivery constraints

Traffic data

Logistics networks

□ \$ Energy infrastructures

19

[PCA-03] OPTIMIZED MANAGEMENT **OF STOCKS AND SUPPLY OF THE PRODUCTION LINE**

The Digital Twin reflects the current state of stocks for production (stocks of components, sub-components, raw materials, tools, resources and flows, etc.) and compares it with the order book. Sensor data can be used to trigger alerts.

INDUSTRY OF

THE FUTURE

SHOWCASE

SEW Usocome

Siemens

NDUSTRIE DU FUTUR

EDICELLENCE DE LA FRENCH FRA

BENEFITS

- Optimize the production rate, responding to production forecasts and recycling defective parts back into the production line or sending them to other operators. All this is possible thanks to the inbound/outbound material and product flows and the status of storage areas, waste bins and raw material stocks, as updated in the Digital Twin of the process.
- Respond to supply incidents involving the production equipment for aeronautical parts, to ensure that production is sustained.

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment 5. High technology
- 6. Oil and chemical
- 7. Communication infrastructures
- 8. Materials
- 9. Energy production
- 10. Pharmaceutical products
- 11. Consumer goods
- 12. Transport and logistics

[PCP-01] IMPROVEMENT OF THE **DESIGN OF PRODUCTION LINES**

PROCESS

Using simulations based on current and historical production line data and according to projected demand, the Digital Twin enables the improvement of the design of production lines.

BENEFITS

- · Optimize the design of new production lines or adapt existing production lines to new products by exploiting the data from the Digital Twins. The Digital Twin benefits manufacturers and integrators, provided they manage to recover operating data from their customers.
- Assist in the decision to relocate production. build new factories or production lines, or modify the supply chain according to cost, guality and environmental impact criteria.

- 6. Oil and chemical

USERS	Production Line Designer	Industrialization Manager
L TWIN Applications	Analysis of production history (incidents)	Analysis of product returns and repairs
DIGITAI data Laver	Line and equipment models (past, current)	Production process models (past, present)
PHYSICAL WORLD	Production lines	Industrial equipment

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 7. Communication infrastructures
- 8. Materials
- 9. Energy production
- 10. Pharmaceutical products
- 11. Consumer goods

Alfi Technologie Aptar Pharma Elm.Leblanc Latécoère L'Oréal Matra Électronique Seco

[PCP-02] VIRTUAL COMMISSIONING **OF A PRODUCTION LINE**

The Digital Twin of the production line can simulate its commissioning or its evolution, so that the line can be approved before its real commissioning.

BENEFITS

- Reduce the time taken by the IT team to physically test the machine and its connectivity after the line has been delivered, and thus reduce production downtime.
- Verify or anticipate future changes to the new production line when new car models are introduced, as well as test the improvements virtually without disrupting production.

INDUSTRIES

- 1. Automotive 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Oil and chemical
- 7. Materials
- 8. Energy production
- 9. Pharmaceutical products
- 10. Consumer goods

- **INDUSTRY OF** NDUSTRIE DU FUTUR THE FUTURE SHOWCASE CENCELLENCE DE LA FRENCH FRA
- Alfi Technologie Cauquil Gebo Cermex Lisi Aérospace (Aveyron) Schneider Electric
- Siemens Sodistra

[PCP-03] TRAINING OF OPERATORS

PROCESS

The Digital Twin of the production line, its equipments, and its operators, allows the latter to be trained in their tasks, based on the instructions of the process in relation to the physical industrial equipment. This training in production and maintenance operations could be based, for example, on augmented reality techniques, such as the projection of operations to be performed or the use of augmented reality glasses.

BENEFITS

- Train without the need to halt or physically access the production line.
- Improve the quality of training (save time, increase quality, improve safety at work).
- Train to speed up specific production, continuous improvement.
- · Provide assistance with job changes.
- Train in equipment maintenance.

INDUSTRIES

- 2. Aviation, trains,

3. Construction 4. Industrial equipment

1. Automotive

ships

- 5. High technology
- 6. Oil and chemical

USERS	Production Trainer	Maintenance Trainer	Operator
L TWIN	Simulations of maintenance operations	Simulations of the production process	Training c operators (productio maintenanc
DIGITAI Data Laver	Line and equipment models	Maintenance operation models	Models of the workstatio
PHYSICAL WORLD	Factories	Production lines	Industria equipmer

- 7. Communication infrastructures
- 8. Materials
- 9. Energy production
- 10. Pharmaceutical products
- 11. Consumer goods
- 12. Transport and logistics

Alfi Technologie FPT Industrial L'Oréal Orano Schneider Electric Sunna Design

[PCP-04] OPTIMIZATION OF THE PRODUCTION LINE

The Digital Twin of the production line makes it possible to optimize the uptime of the line, for instance by providing sufficient production buffers and conveyor belts, thereby reducing bottlenecks by increasing output.

BENEFITS

USERS

- Optimize the real-time routing of automatically guided vehicles (AGVs) based on vehicle geolocation and the Digital Twin of the production process and factory.
- Optimize the production process based on the location of the products being manufactured. Reduce machine waiting time and movements of operators.

INDUSTRIES

- 1. Automotive 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Oil and chemical
- 7. Materials
- 8. Energy production
- 9. Pharmaceutical products
- 10. Consumer goods

Air Liquide Airbus Helicopters Aptar Pharma Claas Tractor Cotral Lab Figeac Aéro Latécoère Lisi Aérospace (Val-d'Oise) Matra Électronique

Operators

MG Tech Safran Saunier Duval Schaeffler Schneider Electric Siemens SNCF Soitec Velum

Manager

[PCP-05] IMPROVEMENT OF **PRODUCT QUALITY BASED ON PRODUCTION HISTORY**

The Digital Twin of a production line and the products being manufactured makes it possible to improve the quality of the products based on past production data, including the quality issues observed. This data can be used to replay operations, provide predictions and recommendations during production, and simulate alternative operations.

Examples of applications: pneumatics, manufacture of composite materials, vaccines, etc.

BENEFITS

PROCESS

- previous end-to-end operations.
- defects, if the model allows it (explanatory model).
- Predict possible incidents based on the production process model built from historical data.
- simulating alternative processes to avoid/reduce the predicted incidents and by implementing recommendations.

[PCP-06] REAL-TIME CONTROL **OF THE PRODUCTION LINE**

The Digital Twin reflects the current production status (production lines, workstations, equipment used, progress of products being manufactured) and compares it with the production schedule. Sensor data can be used to trigger alerts.

BENEFITS

USERS

TWIN

DIGITAL

- Have a real-time overview of the progress of production orders for an assembly or manufacturing line. Respond immediately to alerts issued in the event of an incident at a workstation in order to reduce disruption. Automatically or manually re-schedule production following identified incidents and delays.
- Respond to operational incidents involving power generation equipment to ensure the safety of people and sustain production. Be aware of long-term deviations in order to sustain optimal operation.

Production

Manager

Factories

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Oil and chemical
- 7. Materials
- 8. Energy production

Schedulina

Manager

Industrial

equipment

- 9. Pharmaceutical products
- 10. Consumer goods
- Engi JPB Système

Maintenance

Manager

Products

beina

manufactured

Electricity or

communication

networks

Air Liquide	Magafor
Airbus Helicopters	Matra Électronique
Bosch	Michelin
Cauquil	Pellenc
Cotral Lab	Safran
Engie	Schaeffler

INDUSTRIE DU FUTUR

2

INDUSTRY OF

THE FUTURE

SHOWCASE

Schneider

Sunna Design

Electric

Soitec

Security

Quality

Manager

Production lines

[PCP-07] REDUCTION OF THE **ENVIRONMENTAL IMPACT OF** THE PRODUCTION LINE

using less energy or water) and comply with regulations.

PROCESS

- print of the production line.
- environmental footprint of the product during production.

J.	riigii technology
6	Oil and chemical

26

[PCD-01] OPTIMIZATION OF THE **PRODUCT DISTRIBUTION NETWORK ACCORDING TO COST, QUALITY, TIME** AND ENVIRONMENTAL IMPACT CRITERIA

The Digital Twin of the distribution network assists in the choice of carriers in order to optimize the delivery process according to different criteria such as cost, quality, time and environmental impact. It also makes it possible to study the impact of changes on the current delivery process.

BENEFITS

- Measure and then reduce the environmental footprint of the downstream chain.
- Secure deliveries, manage risk, and ensure resilience of the delivery model.
- Streamline the choice of carriers for delivery to optimize the quantities in stock and reduce the risk of delivery delays.
- Experiment with new scenarios, such as the introduction of a deposit process involving the recovery of empty bottles.

INDUSTRIES

2. Aviation, trains, ships

- 4. High technology
- 5. Oil and chemical
- 6. Materials
- 7. Energy production
- 8. Pharmaceutical products
- 9. Consumer goods 10. Transport and logistics

لملمك

Warehouses

₽₩, ₽

Carriers

Final manufactured Logistics networks products

[PCD-02] DYNAMIC OPTIMIZATION **OF THE DISTRIBUTION OF A PRODUCT TO CUSTOMERS**

PROCESS

The Digital Twin of the complete logistics network and its resources will optimize the real-time distribution of a product to customers through information on shipping planning, determining and adjusting the route, and tracking the receipt of orders.

BENEFITS

- Optimize delivery times and responsiveness to orders.
- · Optimize distribution time.
- Reduce the carbon footprint.
- Be resilient to transport contingencies.

INDUSTRIES

- 1. Automotive
 - 2. Aviation, trains, ships
- 3. Industrial equipment
 - 4. High technology
 - 5. Oil and chemical

PHYSICAL

OCP

- 6. Materials
- 7. Energy production
- 8. Pharmaceutical products
- 9. Consumer aoods
- 10. Transport and logistics

[EQT-01] VIRTUAL COMMISSIONING **OF EQUIPMENT**

The Digital Twin of a piece of equipment and its tools, presented in the context of the product to be manufactured, makes it possible to virtually validate the introduction (or evolution) of a piece of equipment and its tools or the introduction of a new product before its operational implementation.

7. Communication

production

products

11. Consumer

logistics

10. Pharmaceutical

8. Materials

9. Energy

infrastructures

BENEFITS

- Reduce production disruptions through prior validation of the production cell, including automation logic.
- Save time through teamwork between robotic engineers, mechanical engineers (designing tools, conveyor belts, workpiece carriers) and automation engineers in a virtual environment.
- Guarantee safety, as the experiments are carried out virtually and not in the workshop.

000 . . .

Industrial

equipment

- 1. Automotive 2. Aviation, trains,
- ships
- 3. Construction
- 4. Industrial equipment
- 5. High
- technology 6. Oil and
- goods 12. Transport and chemical
- **INDUSTRY OF** INDUSTRIE DU FUTUR THE FUTURE SHOWCASE neksellenkse die La Filensh filb

Alfi Technologie Gebo Cermex Latécoère

L'Oréal

Products to be

manufactured ,

assembled

The Digital Twin of a piece of industrial equipment, an industrial plant, or a complex system facilitates maintenance operations.

BENEFITS

RESOURCE

- Save time and reduce the error rate by training operators in the maintenance of industrial equipment, possibly using augmented reality (e.g., projection of operations to be performed)
- Reduce the environmental impact and save time through remote maintenance of complex equipment or systems. An expert, who has a Digital Twin that reflects the exact status and configuration of the equipment on the customer's premises, remotely guides an operator on site.
- · Prepare a maintenance operation for industrial and nuclear facilities in order to reduce the duration of the operation and guarantee its safety.
- Work on a Digital Twin for a semiconductor supplier, which puts the physical equipment in failure conditions thanks to the recovery of the last memory state. The correction is worked out remotely and then applied and tested on site.

[EQT-02] MAINTENANCE ASSISTANCE

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains, ships
- 3. Construction
- 4. Industrial equipment
- 5. High technology
- 6. Oil and chemical
- 7. Communication infrastructures
- 8. Materials
- 9. Energy production
- 10. Pharmaceutical products
- 11. Consumer goods
- 12. Transport and logistics

Alfi Technologie Bosch Lectra L'Oréal Savréso Siemens

[EQT-03] PREDICTIVE **MAINTENANCE OF EQUIPMENT**

The Digital Twin of a piece of equipment can predict the occurrence of breakdowns, provide maintenance recommendations and, if the predictive model allows it, assist in troubleshooting. A predictive model is built beforehand based on observed failures and historical equipment usage data.

Examples of data: vibrations, acoustic signals, infrared images, machine parameters.

8. Materials

production

products

11. Consumer

goods

logistics

12. Transport and

10. Pharmaceutical

9. Energy

INDUSTRIES

2. Aviation, trains,

3. Construction

equipment

5. High technology

6. Oil and chemical

7. Communication

infrastructures

1. Automotive

ships

4. Industrial

BENEFITS

- Reduce the number of unexpected breakdowns that can potentially disrupt production.
- Reduce equipment unavailability as maintenance is only carried out when necessary and not according to a pre-determined schedule.
- Improve the understanding of the causes of breakdowns, if the model allows it (explanatory model, as opposed to a black box model).

PHYSICAL WORLD

Industrial equipment

Elm.Leblanc Engie FPT Industrial Gebo Cermex L'Oreal (Aisne) Schneider Electric Siemens SNCF

[EQT-04] DESIGN AND **ADMINISTRATION OF A FACTORY OT/IT ARCHITECTURE**

The Digital Twin reflects the current state of the communication network of a factory.

BENEFITS

ESOURCE

2

- · Detect breakdowns.
- Optimize and improve in order to meet future demand. Optimize performance and energy consumption.
- Automate to ensure that service quality targets are met.
- Simulate failures and potential changes in the OT/IT architecture.

INDUSTRIES

- 1. Automotive

 - 5. Oil and chemical
- USERS \mathcal{A} IT Manager Maintenance Manager **APPLICATIONS** 3D view of Simulations of TWIN IT/OT networks network coverage (changes) DIGITAL DATA Models of the Models of the network (OT/IT) buildings edge - cloud WORLD -PHYSICAL 000000 000 Factories Production lines

2. Aviation, trains, ships 3. Industrial equipment

4. High technology

- 6. Communication infrastructures

- 7. Materials
- 8. Energy production
- 9. Pharmaceutical
- products
- 10. Consumer goods
- 11. Transport and logistics

[USN-01] MANAGEMENT OF INDUSTRIAL INFRASTRUCTURE THROUGHOUT ITS LIFE CYCLE

The Digital Twin allows for better management of the infrastructure from its design to its operation. Information is contextualized and available in real time. This allows each stakeholder to be independent in their contribution and decision-making.

The Digital Twin model is created at the design stage. Its data, models and visualizations are used throughout the life cycle. Operations can develop the Digital Twin and also provide feedback for the design.

BENEFITS

Design and construction stages:

- Control the CAPEX by optimizing the design of the equipment
- Reduce the risk by consolidating data not duplicating it.
- · Control the environmental impact by integrating the construction elements.
- **Operation stage:** · Control the time taken for commissioning infrastructure and for operators to get familiar with it. Access data and
 - records for maintenance operators from the outset, and capture feedback for the design
- Control risks by detection ting failures, issuing alerts and simulations.

INDUSTRIES

7. Materials 1. Automotive 2. Aviation, 8. Energy trains, ships production 3. Industrial 9. Pharmaceuti cal products eauipment 10. Consumer 4. High technology goods 5. Oil and 11. Transport and logistics chemical

6. Communication infrastructures

INDUSTRY OF Vitrine INDUSTRIE DU FUTUR THE FUTURE SHOWCASE CECELLENCE DE LA FRENCI FIN

Air Liquide Latécoère Lisi Aérospace (Aveyron) Groupe Monnoyeur Schaeffler Schneider Electric Siemens Sodistra

The Digital Twin of an operator, in the context of their workstation, can simulate their activity and detect painful or dangerous postures or movements. The operator's body type can be reflected in the Digital Twin, and the areas subject to stress (lumbar region, arm muscles, etc.) are highlighted during the simulation of movements.

The cognitive load of the operator can be optimized: design of the dashboard, process cockpit, etc.

BENEFITS

- Reduce musculoskeletal disorders and improve health and well-being at work.
- Improve work efficiency by detecting unnecessary or awkward movements and experiment with corrections.
- Make fewer errors related to cognitive load.

INDUSTRIES

- 1. Automotive
- 2. Aviation, trains,
- ships 3. Construction 4. Industrial
- equipment
- 5. High technology 6. Oil and chemical

USERS Methods Engineer Ergonomics Specialist **APPLICATIONS** Simulations of 3D view movements of the operators TWIN (collisions, areas in their working of stress on the environments body) DIGITAL DATA Models of Models of the operator's operator gestures WORLD PHYSICAL 0000 Operators Workstations

[OPR-01] IMPROVEMENT OF THE

- 7. Communication infrastructures
- 8. Materials
- 9. Energy production
- 10. Pharmaceutical products
- 11. Consumer goods
- 12. Transport and logistics

Elm.Leblanc FPT Industrial Pellenc Schneider Electric Seco Wilo

Experimentations with modifications to the workstation

Models of stress on the human bodv

Models of the workstations

Models of the products to be manufactured / assembled

WHAT WAS **IMPOSSIBLE YESTERDAY IS POSSIBLE TODAY!**

Since 2011 and the Industry 4.0 initiative, with the arrival of the cloud and its computing and storage power, the rise of new technologies and digital engineering has been driving the new industrial revolution.

At the heart of this paradigm shift, the Digital Twin offers a way to represent a real-world entity to address specific issues and uses.

The Digital Twin has a positive impact on organizational, technological, environmental, societal and financial issues for companies. Updating data with a frequency and precision adapted to the issues and uses will encourage companies to guestion and even reinvent themselves in order to cope with global competition.

The benefits of the Digital Twin as a solution for understanding, analyzing, predicting and optimizing operations will also encourage companies to consider new business models and new uses.

WHAT WAS IMPOSSIBLE YESTERDAY **IS POSSIBLE TODAY.**

Savings of 30% during the design phase and 50% throughout the industrial value chain, lead times halved, machine downtime reduced by 20% and significant reductions in environmental impact are all made visible by the performance indicators calculated by the Digital Twin.

The current cost of a Digital Twin ranges from €50,000 to over €500,000, depending on whether it is an equipment twin or a factory twin. However, the return on investment is a more relevant indicator than the cost.

As the Industry of the Future Showcases* demonstrate, the return on investment can be achieved

in just a few months, because the expected gains throughout the value chain are identified and demonstrated, and form part of the capitalization of knowledge. The benefits will then add up with the implementation of new use cases based on the Digital Twin already built.

The holistic dimension of the Digital Twin enables digital continuity between the different business lines of the company and along the upstream and downstream value chains, throughout the product life cycle. It therefore promotes the convergence of IT systems and industrial operations, to the benefit of the sustainability of companies and greater knowledge of ecosystems and markets.

HOW CAN AN INDUSTRIAL DIGITAL TWIN BE **IMPLEMENTED?**

It requires a step-by-step approach, which will be the subject of an upcoming AIF document that will address, among other things, the issues of information flows (IT) and internal operational technologies (OT).

*find out more

APPENDICES

A USE CASE FOR EVERYONE

The tables in the appendices allow readers to find the most relevant use cases according to their profiles.

THERE ARE 5 DIFFERENT FILTERS:

- **User**: Data Scientist, Quality Manager, etc.
- Applications offered by the Digital Twin: production process simulations, maintenance recommendations, etc.
- Data & models used by the Digital Twin: production data, equipment model, etc.
- Real-world objects represented: industrial equipment, warehouses, etc.
- Relevant industries for the use cases: automotive, construction, etc.

This will allow you to explore the possibilities of using the data and models of a Digital Twin for other similar use cases, thereby increasing the return on investment.

FILTER 1: USER

USER \ FAMILY	PRODUCT	PROCESS	RESOURCE	OPERATORS
Automation Engineer			EQT-01	
Project Manager for New Constructions			USN-01	
End customer		PCD-02		
Production Line Designer		PCP-01, PCP-02, PCP-05		
Driver	PDT-04			
Data Scientist		PCP-05	EQT-03	
Equipment Expert			EQT-03	
Maintenance Trainer		PCP-03		
Production Trainer		PCP-03		
Warehouse Manager		PCA-02		
Mechanical Engineer			EQT-01	
Methods Engineer	PDT-02			OPR-01
Product Engineer	PDT-01, PDT-02, PDT-03	PCP-05, PCP-07	USN-01	
Robotics Engineer			EQT-01	
Warehouse Clerk		PCA-03, PCD-02		
Operators		PCP-03, PCP-04, PCP-06	USN-01	
Maintenance Operator		PCP-03	EQT-02, EQT-03, USN-01	
Embedded Systems Programmer	PDT-04			
Technician	PDT-04			
Procurement Manager		PCA-01		
Continuous Improvement Manager			USN-01	
Supply Chain Manager	PDT-02	PCA-01, PCA-02, PCA-03		
Cybersecurity Manager			EQT-04	
Sustainable Development Manager	PDT-02, PDT-05	PCA-01, PCD-01		
Distribution Manager		PCD-01, PCD-02		
Industrialization Manager	PDT-01, PDT-03	PCP-01, PCP-02, PCP-07		
IT Manager			EQT-04	
Logistics Manager		PCA-02, PCD-01, PCD-02		
Maintenance Manager		PCP-04, PCP-06	EQT-02, EQT-03, EQT-04	
Scheduling Manager		PCA-03, PCP-04, PCP-06		
Planning Manager		PCA-03		
Production Manager		PCA-03, PCP-02, PCP-04, PCP-05, PCP-06		
Quality Manager	PDT-01, PDT-03, PDT-04	PCA-01, PCP-04, PCP-05, PCP-06, PCP-07		
Quality Manager	PDT-03, PDT-04	PCA-01, PCP-04, PCP-05, PCP-06, PCP-07		
CSR Manager (Corporate Social Responsibility)		PCP-07		
Occupational Health Manager				OPR-01
Security Manager	PDT-05	PCP-04, PCP-06		
Second-hand spare parts dealer	PDT-05			
Ergonomics Specialist				OPR-01

FILTER 2: APPLICATION

APPLICATION OF THE DT \ USE CATEGORY	
Assistance for construction	
Assistance with maintenance of infrastructure	
Assistance with commissioning of infrastructure	
Troubleshooting assistance	
Repair assistance	
Assistance in choosing a supplier network	
Assistance in choosing a transport network	
Assistance in dynamically selecting the best distribution route	
Improvements of Infrastructure performance	
Analyses of production history	
Analyses of consumer usage	
Calculations and analyses of onvironmental impacts	
Construction of predictive models	
Detection of threats (cyber security)	
Experimentations with modifications to the workstation	
Training of operators	
Self-adaptive management of network resources	
History of maintenance operations	
Ontimization of the worksnace	
Optimization of the logistics route	
Optimization of the refueling of vehicles	
Monitoring and control tools	
Shipping schedules	
Breakdown predictions and alerts	
Predictions of quality defects	
Receipt, monitoring and tracking of orders for the production line	
Recommendations for measures to prevent manufacturing defects	5
Maintenance recommendations	
Product use recommendations	
(Re-)scheduling of production orders	
Process or product reviews to reduce environmental impact	
Simulations of maintenance operations	
Simulations of product behavior	
Simulations of operator movements	
Simulations of ITOT networks	
Simulations of scenarios to reduce environmental impacts	
Simulations of operations with collision detection	
Dismantling simulations	
Supply chain logistics simulations	
Simulations of delivery logistics	
Production process simulations	
Iracking the distribution of batches of products	
Tracking of the delivery by the customer	
Dasnboards, alerts	
Remote maintenance	
Virtual Integration tests (0111)	
waste recycling	
3D view of the warehouse with status of inventory levels	1
3D view of the warehouse with status of inventory levels 3D view of the production cell	
3D view of the warehouse with status of inventory levels 3D view of the production cell 3D view of the operator in their working environment	
3D view of the warehouse with status of inventory levels 3D view of the production cell 3D view of the operator in their working environment 3D view of network coverage	

3D product view with component traceability

 \sim

Ш

 \bigcirc

 \square

 \geq

 \triangleleft

 \mathcal{O}

 \bigcirc

UNDERSTAND	OPTIMIZE	EXPLOIT
USN-01		
USN-01		
		USN-01
	PDT-04	
PDT-04		
	PCA-01	
	PCA-01, PCD-01	
	PCD-02	
		USN-01
PDT-05		
DT-01,PCP-01,PCP-05		
PDT-01, PCP-01		
PDT-01		
	PCA-03	
PDT-02, PCP-07		
USN-01		
	PCD-02	
	PCP-05, EQT-03	
EQT-04		
	OPR-01	
PCP-03, EQT-02		
EQT-04		
PDT-05		
	PCA-03	
	PDT-04	
	PCP-01	
	PCA-02	
	PCA-02	
		USN-01
	PCD-02	
		EQT-03
	PCP-05	
		PCA-03
	PCP-05	
	PDI-04, EQI-03	
	PDI-04	
DDT 00 D0D 07		PCP-04, PCP-06
PD1-02, PCP-07		
PCP-03, EQT-02		
PD1-01, PD1-03		
OPR-01		
EQT-04		
PDT-02, PCP-07		
EQI-01		
PD1-05, USN-01	504.01	
	PCA-01	
	PCA-01	
2D1-01, PCA-01, PCP-01, 2P-02, PCP-03, PCP-05		
	PCD-02	
	PCD-02	
		PCA-03, PCP-04, PCP-06, EQT-01
		EQT-02
	PCP-02	
	PCP-07	
		PCA-03
EQT-01		
OPR-01		
EQT-04		
		PCP-04, PCP-06
PDT-04, PDT-05		

FILTER 3: DATA & MODELS USED BY THE DIGITAL TWIN

DIGITAL TWIN \ FAMILY	PRODUCT	PROCESS	RESOURCE	OPERATORS
Planned orders		PCD-01		
Vehicle energy consumption data		PCA-02		
Equipment maintenance data		PCP-01		
Product maintenance data	PDT-01, PDT-04, PDT-05			
Production data		PCA-03, PCP-01, PCP-04, PCP-05,PCP-06		
Supply chain environmental impact data	PDT-02	PCA-01		
Production-related environmental impact data	PDT-02	PCP-07		
Equipment usage data			EQT-03	
Product usage data	PDT-01, PDT-04, PDT-05			
Transport flows		PCA-01		
Packing list and delivery constraints		PCA-02		
Operator gesture models		PCP-03	EQT-02	OPR-01
Models of the operator				OPR-01
Models of stress on the human body				OPR-01
Warehouse models		PCA-01, PCA-03, PCD-01, PCD-02		
Equipment models		PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-06, PCP-07, PCD-02	EQT-01, EQT-02, EQT-03	
Models of connected equipment			EQT-04	
Models of the production lines		PCP-01, PCP-02, PCP-03, PCP-04, PCP-06, PCP-07	EQT-02	
Models of distribution batches		PCD-01, PCD-02		
Models of the means of transport (type of vehicle, capacity, etc.)		PCA-02, PCD-01, PCD-02		
Models of maintenance operations		PCP-03	EQT-02	
Models of tools			EQT-01, EQT-02	
Models of the buildings			EQT-04, USN-01	
Models of the material flows		PCA-03, PCP-05		
Models of the workstations		PCP-03		OPR-01
Models of the production process	PDT-01, PDT-03	PCA-01, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07	EQT-04, USN-01	
Models of the network (OTIT) edge - cloud			EQT-04	
Logistics network models		PCA-01, PCA-02, PCD-01, PCD-02		
Models and status of logistics networks (GPS coordinates, traffic, etc.)		PCA-02, PCD-02		
Geographic models			USN-01	
Product models	PDT-01, PDT-02,PDT-03, PDT-04, PDT-05	PCP-02, PCP-03, PCP-05	EQT-01	OPR-01
Breakdowns observed			EQT-03	
Configurations of manufacturing operations		PCP-02, PCP-05	EQT-01	
Supplier supply schedules		PCA-03		
Delivery schedules		PCD-02		
Production schedules		PCP-04, PCP-06		
Automation programs		PCP-02	EQT-01	
Component traceability	PDT-05			

FILTER 4: REAL-WORLD OBJECTS REPRESENTED

 \mathcal{O}

Ш

 \bigcirc ____

 \square

Z

ш

 \triangleleft

PHYSICAL WORLD \ FAMILY	PRODUCT	PROCESS	RESOURCE	OPERATORS
Cars, planes, high-tech products	PDT-01, PDT-04, PDT-05		EQT-02	
Other connected equipment			EQT-04	
Components	PDT-02, PDT-03			
Energy	PDT-02	PCA-02, PCP-07		
Warehouses		PCA-01, PCA-02, PCA-03, PCD-01, PCD-02		
Production environments		PCP-05		
Geographical environments			USN-01	
Industrial equipment		PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-06, PCP-07, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04	
Supply flows		PCP-01		
Suppliers		PCA-01		
Energy infrastructures		PCA-02		
Petrochemical, gas and electricity production facilities, nuclear power plants, construction, etc.			USN-01	
Production lines	PDT-03	PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07	EQT-04	
Raw material and waste	PDT-02	PCA-01, PCP-07		
Operators		PCP-03		OPR-01
Tools		PCP-02	EQT-01	
Workstations		PCP-03		OPR-01
Products to be manufactured/assembled		PCP-02	EQT-01	OPR-01
Products being manufactured or supplied	PDT-03	PCA-03, PCP-04, PCP-05, PCP-06, PCP-07		
Final manufactured products	PDT-02	PCD-01, PCD-02		
Electricity or communication networks		PCP-04, PCP-06, PCP-07	EQT-04	
Logistics networks		PCA-02, PCD-01, PCD-02		
Carriers		PCA-01, PCA-02, PCD-01, PCD-02		
Factories		PCA-03, PCP-03, PCP-04, PCP-06, PCP-07	EQT-04	

FILTER 5: RELEVANT INDUSTRIES FOR THE USE CASES

INDUSTRY \ FAMILY	PRODUCT	PROCESS	RESOURCE	USER
Automotive	PDT-01,PDT-02, PDT- 04,PDT-05	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Aviation, trains, ships	PDT-01,PDT-02, PDT- 04,PDT-05	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Construction	PDT-01,PDT-02, PDT- 04,PDT-05	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07	EQT-01, EQT-02, EQT-03	OPR-01
Industrial equipment	PDT-01, PDT-02, PDT-03, PDT-04, PDT-05	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
High technology	PDT-01, PDT-02, PDT-03, PDT-04	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Oil and chemical	PDT-02	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Communication infrastructures	PDT-02, PDT-03, PDT-04	PCA-01, PCA-02, PCA-03, PCP-01, PCP-03, PCP-07	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Materials	PDT-02	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Energy production	PDT-04	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Pharmaceutical products	PDT-02	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Consumer goods	PDT-01, PDT-02, PDT- 04,PDT-05	PCA-01, PCA-02, PCA-03, PCP-01, PCP-02, PCP-03, PCP-04, PCP-05, PCP-06, PCP-07, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01
Transport and logistics	PDT-04	PCA-01, PCA-02, PCA-03, PCP-03, PCD-01, PCD-02	EQT-01, EQT-02, EQT-03, EQT-04, USN-01	OPR-01

The AIF would like to thank all the participants of the "Digital Twin" Technical Committee for their contribution to the production of this brochure. And in particular:

- Emmanuelle Abisset-Chavanne, Damien Lamy, Ensam
- Stéphane Barth-Chahinian, AIF Lidia Manogarane,
- Antoine Beugnard, IMT Atlantique
- Didier Caudron, Sanofi
- Christian Chaplais, Dassault Systèmes
- Thierry Coupaye, Orange
- Fahad Golra, Agileo Automation
- Hervé Labarge, Heverett
- Patrick Lamboley, Schneider Electric

S

- Mines Saint-Etienne
- Dassault Systèmes
- Philippe Marcel, Captronic
- Yvan Picaud, Orange
- Ariane Piel, CEA
- Jean-Pascal Riss, Schneider Electric
- Olivier Scart, Dassault Systèmes
- Philippe Thaillades, Gimelec
- Gilles Triay, Latesys
- Marc Zolghadri, Supméca

Created in 2015, the Alliance Industrie du Futur (AIF) is a non-profit association which organizes and coordinates, on a national level, the initiatives, projects and work of SMEs for the modernization of industrial tools and the transformation of their economic model, in particular through the contribution of new technologies.

With Frédéric Sanchez as its president since March 2021, it is responsible for the **Solutions Industry of the Future** Sector, certified by the National Industry Council: www.solutionsindustriedufutur.org.

To this end, it leads the project groups of the Strategic Sector Contract. Its commitment: to integrate the employee, with their expertise and interpersonal skills, as a key element in the success of this process. The goal is to reposition the French offer of solutions for the industry of the future at the heart of the country's industrial revival.

industrie_futur

Founding member of

sign/Implementation: comnext^{*}- March 2023